This article was downloaded by: On: 24 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Macromolecular Science, Part A

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597274

Observation of a Silk-Like Crystal Structure in a Genetically Engineered Periodic Polypeptide

Mark T. Krejchi^a; Edward D. T. Atkins^b; Maurille J. Fournier^c; Thomas L. Mason^c; David A. Tirrell^a ^a Department of Polymer Science and Engineering, University of Massachusetts Amherst, Massachusetts, USA ^b H. H. Wills Physics Laboratory, University of Bristol, Bristol, UK ^c Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Massachusetts, USA

To cite this Article Krejchi, Mark T. , Atkins, Edward D. T. , Fournier, Maurille J. , Mason, Thomas L. and Tirrell, David A.(1996) 'Observation of a Silk-Like Crystal Structure in a Genetically Engineered Periodic Polypeptide', Journal of Macromolecular Science, Part A, 33: 10, 1389 — 1398

To link to this Article: DOI: 10.1080/10601329608014915 URL: http://dx.doi.org/10.1080/10601329608014915

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

OBSERVATION OF A SILK-LIKE CRYSTAL STRUCTURE IN A GENETICALLY ENGINEERED PERIODIC POLYPEPTIDE

MARK T. KREJCHI

Department of Polymer Science and Engineering University of Massachusetts Amherst, Massachusetts 01003, USA

EDWARD D. T. ATKINS

H. H. Wills Physics Laboratory University of Bristol Bristol BS8 1TL, UK

MAURILLE J. FOURNIER AND THOMAS L. MASON

Department of Biochemistry and Molecular Biology University of Massachusetts Amherst, Massachusetts 01003, USA

DAVID A. TIRRELL*

Department of Polymer Science and Engineering University of Massachusetts Amherst, Massachusetts 01003, USA

ABSTRACT

A genetically engineered periodic polypeptide consisting of 36 repeats of the octapeptide sequence -(AlaGly)₃GluGly- has been crystallized from solution in aqueous lithium bromide. Analysis by solid-state nuclear magnetic resonance spectroscopy, vibrational spectroscopy, and wide-angle x-ray diffraction reveals a crystal structure analogous to that

1

obtained when silk solutions are allowed to dry under quiescent conditions, i.e., the silk I structure. Previous analyses of the same polymer have demonstrated an antiparallel β -sheet architecture (silk II structure) in samples crystallized from formic acid. These results illustrate the potential for controlling the solid-state structures and properties of genetically engineered materials through selection of appropriate processing and crystallization conditions.

INTRODUCTION

Recent developments in the bacterial expression of artificial genes have given rise to a new class of polymeric materials characterized by essentially uniform macromolecular architectures [1–8]. Our interest in such materials has been directed in part toward the engineering of controlled crystal structures, and we have recently reported the synthesis and solid-state structural analysis of the repetitive polypeptide comprising 36 copies of octapeptide 1 [8d].

-(AlaGly)3GluGly-

The design of sequence 1 has been described in detail [8d]. A key element of the design was the known propensity of poly(L-alanylglycine) [poly(AG)] and *Bombyx mori* silk fibroin to adopt antiparallel (ap) β -sheet structures in the solid state. Glutamic acid was inserted into the sequence at intervals of eight amino acids in order to 1) define the folding periodicity of the chain, and 2) control the chemical functionality of the surfaces of the resulting lamellar crystals. The key elements of the expected structure have been verified in polymers of 1 crystallized from formic acid, with the anticipated ap β -architecture supported by the results of x-ray diffraction and spectroscopic analyses.

But poly(AG) and *B. mori* fibroin are known to exhibit a second crystal structure as well. Designated silk I, this structure is observed when silk solutions are allowed to dry under quiescent conditions, or when poly(AG) is isolated by dialysis from solutions in aqueous lithium bromide. The silk I structure is unstable with respect to conversion to the β (silk II) form, and it has been described by Lotz and Keith [9] as a "crankshaft" architecture with glycine and alanine residues adopting dihedral angles that approximate those of α -helical and extended conformations, respectively. Alternative structures have also been proposed for silk I [10].

Our previous work on polymers of 1 was directed toward the growth of macromolecular crystals consisting of stacked, folded β -sheets [8d]. We show herein that such polymers can be obtained in a silk I-like architecture as well, through selection of appropriate crystallization conditions.

EXPERIMENTAL

Polymer Synthesis

The biological synthesis and molecular characterization of the polymer used in this work [designated poly(AG)₃EG] [11] have been described in detail [8d]. All of the analytical results are consistent with a structure comprising 36 repeats of sequence 1.

Crystallization from Aqueous Lithium Bromide

Crystallization from aqueous lithium bromide was carried out by using a standard procedure developed for the preparation of the silk I-like form of poly-(AG) [12]. Powder samples were prepared by dissolving the polymer in 60% aqueous lithium bromide and dialyzing this solution against progressively diluted solutions of lithium bromide. A precipitate developed at a lithium bromide concentration of 12%, but the dilution process was continued until all the lithium bromide was removed. The precipitate was collected by centrifugation, washed with methanol, and dried overnight in vacuo at room temperature. Only 32% of the original sample weight was recovered in this process, the remaining being precipitated by the addition of methanol. The total recovery using this procedure was approximately 87%. CP/MAS ¹³C-NMR, and Raman spectroscopic analysis (not shown) indicated both precipitates were identical; however, only the fraction recovered by dialysis against progressively diluted solutions of lithium bromide was characterized in detail. This fraction is designated poly(AG)₃EG-I.

Crystallization from Formic Acid

Poly(AG)₃EG was crystallized from formic acid as described in Ref. 8d. The resulting sample is designated poly(AG)₃EG-II.

Measurements

Infrared and Raman spectra were obtained on IBM IR32 Fourier Transform Infrared and Bruker FRA 106 Fourier Transform Raman spectrophotometers, respectively. Cross polarization/magic angle spinning ¹³C-NMR spectra were obtained at 50 MHz on powder samples using a Bruker 200AC spectrometer equipped with a DOTY solids probe and an IBM solids rack. Measurements were collected at a spinning speed of ca. 4000 Hz with a 5- μ s 90°pulse and a cross-polarization time of 2 ms. A line broadening factor of 50 was used during data processing. X-ray diffraction patterns were obtained with a Statton-type evacuated x-ray camera. The nickel-filtered CuK α sealed beam source was collimated with a system of 200- μ m pinholes. Poly(AG)₃EG-I was examined as a powder enclosed in a thin-wall glass capillary.

RESULTS AND DISCUSSION

CP/MAS Solid-State ¹³C-NMR Spectroscopy

The similarity of the structure of poly(AG)₃EG-I to that of silk I [and poly-(AG)-II] is shown most clearly by solid-state ¹³C-NMR spectroscopy. Figure 1 shows the CP/MAS ¹³C-NMR spectra of poly(AG)₃EG as crystallized from formic acid and aqueous LiBr, respectively. The observed chemical shifts and assignments for the alternative structures of silk, poly(AG) and poly(AG)₃EG are summarized in Table 1.

The resonance frequencies observed for the glycine and alanine carbons of poly(AG)₃EG-I are essentially identical to those of silk I and poly(AG)-II, and quite

FIG. 1. CP/MAS ¹³C-NMR spectra of (1) poly(AG)₃EG-I and (2) poly(AG)₃EG-II.

TABLE 1. Chemical Shifts and Assignments of Signals Observed in the CP/MAS ¹³C-NMR Spectra of Silk [13], Poly(AG) [13], and Poly(AG)₃EG

Carbon	Chemical shift, ppm									
	Poly(AG) ₃ EG-I	Silk I	Poly(AG)-II	Poly(AG)3EG-II	Silk II	Poly(AG)-I				
Ala C_{α}	51.0	50.3	50.5	49.9	48.8	48.5				
Ala C_{β}	16.8	16.6	16.6	20.7	19.2	20.0				
Ala $C = O$	176.2	177.5	177.1	171.4	171.5	171.8				
Gly C_{α}	43.5	43.9	43.7	43.6	43.1	43.3				
Gly C=O	171.1	171.1	171.9	171.4	169.8	168.4				

distinct from those of the β -forms of poly(AG)₃EG [8d], silk [13], and poly(AG) [13]. Particularly diagnostic are the β - and carbonyl carbons of alanine, which are shifted by 4-6 ppm in the two alternative crystal structures. The β -carbon of alanine in poly(AG)₃EG-I lies at 16.8 ppm, nearly coincident with that of silk I, which appears at 16.6 ppm [13]. The absence of a shoulder at 20.7 ppm indicates that the sample contains little, if any, of the β -form of poly(AG)₃EG. The alanine carbonyl resonance at 176.2 ppm is also diagnostic for the silk I structure, as the corresponding signal in the β -form lies at 171.4 ppm.

Vibrational Spectroscopy

The infrared spectra obtained from $poly(AG)_3EG-I$ and $poly(AG)_3EG-II$ are shown in Fig. 2. There are substantial differences in the frequencies and intensities of the bands observed in polymers crystallized from formic acid and from aqueous lithium bromide. The amide A, amide I, and amide II vibrational modes are observed at 3289, 1652, and 1538 cm⁻¹, respectively, in $poly(AG)_3EG-I$, and at 3286, 1623, and 1521 cm⁻¹ respectively, in $poly(AG)_3EG-II$. The absence of the characteristic amide I band at ca. 1625 cm⁻¹ confirms that $poly(AG)_3EG-I$ contains little of the β -form.

The Raman spectra obtained from $poly(AG)_3EG-I$ and $poly(AG)_3EG-II$ are shown in Fig 3. As in the infrared analysis, comparison of these spectra reveals substantial differences in the frequencies and intensities of the bands observed in

FIG. 2. Infrared spectra of (1) poly(AG)₃EG-I and (2) poly(AG)₃EG-II.

FIG. 3. Raman spectra of (1) poly(AG)₃EG-I and (2) poly(AG)₃EG-II.

poly(AG)₃EG-I and poly(AG)₃EG-II. The main amide I band at 1660 cm⁻¹ in poly(AG)₃EG-I suggests a dominant structure different from the ap β -sheet, which is characterized by a sharp amide I absorption at 1664 cm⁻¹ [8d].

X-Ray Diffraction

Wide-angle diffraction patterns of poly(AG)EG-I were obtained as powders; a representative example is shown in Fig. 4. A wide-angle diffraction pattern obtained from a powder sample of poly(AG)₃EG-II is included for comparison. Even a qualitative examination of Fig. 4 indicates that the structure of poly(AG)₃EG-I is different from that of P(AG)₃EG-II, in accord with the spectroscopic results discussed previously. The differences may be rationalized on the basis of a chain axis contraction in P(AG)₃EG-I, similar to that proposed by Lotz and coworkers for poly(AG)-II [9]. On the basis of this argument, the diffraction pattern of poly-(AG)₃EG-I was indexed on an orthorhombic unit cell with dimensions a = 0.948nm, b = 1.734 nm, and c (chain axis) = 0.940 nm (errors ± 0.002 nm). The mea-

FIG. 4. Wide-angle x-ray diffraction patterns from powders of (1) $poly(AG)_3EG-I$ and (2) $poly(AG)_3EG-II$.

sured and calculated interplanar spacings are in good agreement, and indexing details are listed in Table 2. The value of the 0.948-nm spacing was assigned on the basis of its second diffraction order at 0.474 nm. This diffraction signal is also observed in poly(AG)₃EG-II and, in both cases, is attributed to the distance between hydrogen-bonded chains. The value of 1.734 nm for *b*, or more specifically its second diffraction order observed at 0.87 nm, represents the average intersheet stacking periodicity. This value is 21% greater than the value reported for poly(AG)-II (0.72 nm) [9]; the same percentage difference in spacing is observed for the diffraction signals indexed 020 in poly(AG)₃EG-II and in poly(AG)-I [8d].

The direct determination of the 001 spacing was not possible, as this diffraction signal and all of its higher orders are obstructed by other hkl signals observed in the powder patterns of poly(AG)₃EG-I. As a result, the *c*-axis dimension of 0.940 nm was determined from the diffraction signal indexed 211. This diffraction signal, although shifted to a lower angle, is similar in character to the signal indexed

TABLE 2. Comparison of the Observed Diffraction Signal Spacings (d_0) in Poly(AG)₃EG-I with Those Calculated (d_c) for an Orthorhombic Unit Cell With Dimensions a = 0.948 nm, b = 1.734 nm, c = 0.940 nm (errors ± 0.002 nm)

kl	d_0	d _c		kl	d_0	d _c
10	1.734	1.734	h = 3	10	0.324	0.311
20	0.867	0.867		11	0.290	0.295
00	0.474	0.474		22	0.259	0.251
10	0.461	0.457	h = 4	00	0.238	0.237
11	0.411	0.411		10	0.234	0.234
				11	0.226	0.227
				22	0.205	0.205
	<i>kl</i> 10 20 00 10 11	$\begin{array}{c cccc} kl & d_0 \\ \hline 10 & 1.734 \\ 20 & 0.867 \\ 00 & 0.474 \\ 10 & 0.461 \\ 11 & 0.411 \\ \end{array}$	$\begin{array}{c ccccc} kl & d_0 & d_c \\ \hline 10 & 1.734 & 1.734 \\ 20 & 0.867 & 0.867 \\ 00 & 0.474 & 0.474 \\ 10 & 0.461 & 0.457 \\ 11 & 0.411 & 0.411 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	kl d_0 d_c kl 10 1.734 1.734 $h = 3$ 10 20 0.867 0.867 11 00 0.474 0.474 22 10 0.461 0.457 $h = 4$ 00 11 0.411 0.411 10 22 22 22 22	kl d_0 d_c kl d_0 10 1.734 1.734 $h = 3$ 10 0.324 20 0.867 0.867 11 0.290 00 0.474 0.474 22 0.259 10 0.461 0.457 $h = 4$ 00 0.238 11 0.411 0.411 10 0.234 11 0.226 22 0.205

equivalently in poly(AG)₃EG-II, suggesting that the coherence length in the *c* dimension is small compared to the other crystallographic dimensions [8d]. Although the positions of the observed diffraction signals in poly(AG)₃EG-I make it difficult to establish a hierarchy of coherent scattering lengths in the *a*, *b*, and *c* directions, it is assumed that they parallel the order observed in poly(AG)₃EG-I. No low angle diffraction signals were observed in any poly(AG)₃EG-I samples prepared in this work.

Crystal Structure of Poly(AG)₃EG-I

Based on the previous detailed analysis of the solid-state structure of poly-(AG)₄EG [8d], the experimental evidence collected on the solid-state structure of poly(AG)₄EG-I supports a crystalline sheet architecture involving a chain-folded lamellar structure as the basic crystalline unit. The powder x-ray diffraction patterns we have obtained for poly(AG)₁EG-I do not provide sufficient information for us to determine a detailed structure, or to delineate clearly between previously proposed models for silk I or poly(AG)-II. The only x-ray structure determination that has been attempted for poly(AG)-II is that of Lotz and Keith [9]. If we assume that our poly(AG),EG-I structure is similar, then it would be envisaged to be constructed by contracting the traditional $ap\beta$ -sheet structure by allowing alternative amino acid residues to adopt conformations such that successive peptide groups are aligned approximately parallel and perpendicular to the chain axis. Lotz and coworkers refer to this chain arrangement as a "crankshaft" conformation. Such an arrangement results in a peptide backbone that is highly contracted such that the rise per amino acid residue is 0.24 nm in poly(AG)₃EG-I compared to 0.35 nm in poly(AG),EG-II. This c-axis contraction [identical to that reported by Lotz and coworkers for poly(AG)-II] leads to an expansion in the b dimension, resulting in the increased intersheet spacing observed in poly(AG)₃EG-I. Lamellar crystals that form the basis of this crystalline entity are constructed from the lateral stacking of sheets as in poly(AG) EG-II. As in the model proposed by Lotz and coworkers, there are four amino acid residues per chain axis repeat related by a 2-fold screw axis. The alanine residues adopt dihedral angles that approximate an extended β -type conformation, and glycine residues are configured as left-handed α -helices. As a result of the absence of any low-angle signals in the x-ray diffraction patterns of poly(AG)₃EG-I, no statements regarding the specific details of chain folding can be made.

ACKNOWLEDGMENTS

We thank S. L. Hsu for guidance in vibrational spectroscopy, and L. K. Thompson for help in obtaining solid-state NMR spectra. This work was supported by grants from the Polymers and Genetics Programs of the National Science Foundation, and by the NSF Materials Research Science and Engineering Center at the University of Massachusetts.

REFERENCES AND NOTES

- J. Cappello and F. Ferrari, in *Plastics from Microbes: Microbial Synthesis of Polymers and Polymer Precursors* (D. P. Mobley, Ed.), Hanser/Gardner Publications, Munich, 1994, p. 35.
- [2] S. T. Case, J. Powers, R. Hamilton, and M. J. Burton, in *Silk Polymers* (D. Kaplan, W. W. Adams, B. Farmer, and C. Viney, Eds.), American Chemical Society, Washington, D.C., 1994, p. 81.
- [3] I. Goldberg and A. J. Salerno, in *Materials Synthesis Utilizing Biological Processes* (P. C. Reike, P. D. Calvert, and M. Alper, Eds.), Materials Research Society, Pittsburgh, PA, 1990, p. 229.
- [4] D. T. McPherson, C. Morrow, D. S. Minehan, J. Wu, E. Hunter, and D. W. Urry, *Biotechnol. Prog.*, 8, 347 (1992).
- [5] A. J. Salerno and I. Goldberg, Appl. Microbiol. Biotechnol., 58, 209 (1993).
- [6] J. P. O'Brien, R. H. Hoess, K. H. Gardner, R. L. Lock, Z. R. Wasserman, P. C. Weber, and F. R. Salemme, in *Silk Polymers* (D. Kaplan, W. W. Adams, B. Farmer, and C. Viney, Eds.), American Chemical Society, Washington, D.C., 1994, p. 104.
- [7] K. P. McGrath and D. L. Kaplan, in *Biomolecular Materials* (C. Viney, S. T. Case, and J. H. Waite, Eds.), Materials Research Society, Pittsburgh, PA, 1993, p. 83.
- [8] (a) K. P. McGrath, M. J. Fournier, T. L. Mason, and D. A. Tirrell, J. Am. Chem. Soc., 114, 727 (1992). (b) H. S. Creel, M. J. Fournier, T. L. Mason, and D. A. Tirrell, Macromolecules, 24, 1213 (1991). (c) G. Zhang, M. J. Fournier, T. L. Mason, and D. A. Tirrell, Ibid., 25, 3601 (1992). (d) M. T. Krejchi, E. D. T. Atkins, A. J. Waddon, M. J. Fournier, T. L. Mason, and D. A. Tirrell, Science, 265, 1427 (1994). (e) R. C. Beavis, B. T. Chait, H. S. Creel, M. J. Fournier, T. L. Mason, and D. A. Tirrell, J. Am. Chem. Soc., 114, 7584 (1992). (f) E. Yoshikawa, M. J. Fournier, T. L. Mason, and D. A. Tirrell, Macromolecules, 27, 5471 (1994). (g) S. Kothakota, T. L. Mason, D. A. Tirrell, and M. J. Fournier, J. Am. Chem. Soc., 117, 536 (1995). (h) Y. Deguchi, M. J. Fournier, T. L. Mason, and D. A. Tirrell, J. Macromol. Sci. – Pure Appl. Chem., A31, 1691 (1994). (i) M. J. Dougherty, S. Kothakota, T. L. Mason, D. A. Tirrell, and M. J. Fournier, Z6, 1779 (1993).
- [9] B. Lotz and H. D. Keith, J. Mol. Biol., 61, 201 (1971).
- [10] (a) T. Konishi and M. Kurokawa, Sen-I Gakkaishi (Engl. Transl.), 24, 350 (1968). (b) S. A. Fossey, G. Nemethy, K. D. Gibson, and H. D. Scheraga, Biopolymers, 31, 1529 (1991). (c) D. L. Kaplan, S. J. Lombardi, W. S. Muller, and S. A. Fossey, in Biomaterials: Novel Materials from Biological Sources (D. Byron, Ed.), Stockton Press, New York, NY, 1991.
- [11] The single-letter abbreviations of the amino acids are A = alanine, G = glycine, and E = glutamic acid.
- [12] B. Lotz, A. Brack, and G. Spach, J. Mol. Biol., 87, 193 (1974). The silk I-like structure of poly(AG) was designated PLAG-II by Lotz et al., and the silk II-like structure of poly(AG) as PLAG-I. In retrospect, this notation is awkward; first because of the interchange of the Roman numerals I and II in comparison with the older silk notation (especially so since silk I can be

considered as a precursor to silk II and therefore there is a built-in logic to the silk notation), and second because the PL symbol is also the single-letter amino acid code for the ProLeu dimer. The PLAG-I/PLAG-II notation could create confusion situations in the description of polypeptides involving these amino acids. Thus, we have chosen to align the nomenclature of our two poly(AG)₃EG structures with the two different silk structures rather than the PLAG notation. Thus, in summary: poly(AG)₃EG-I relates to silk I and PLAG-II [poly(AG)-II], and poly(AG)₃EG-II relates to silk II and PLAG-I [poly(AG)-I].

[13] H. Saito et al., *Macromolecules*, 17, 1405 (1984).